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Global Stability in n-Person Games 

Abstract 

A class of bargaining sets, including the bargaining set Ml   and 

the kernel, is treated with regard to studying the tendency to reach stability 

from unstable points. A known discrete procedure is extended, and these 

results are applied to derive global stability properties for the solutions 

of certain differential equations. These differential equations are given 

in terms of the demand functions which define the bargaining sets, and the 

set of critical points is precisely the bargaining set in question. 



1.  INTRODUCTION 

Most solution concepts that have been proposed for n-person games are 

essentially static in nature. That is, once a "stable" point is proposed, 

there will be no "objection" to that point, and the tendency will be to stay 

there. However, nothing is said about what is likely to occur at a point 

which is not stable. Ther« is nothing generally in the definition of stabi- 

lity to guarantee that an unstable situation will tend toward a stable one. 

In [14], Steams showed that for a class of solution concepts related 

to the bargaining set M. ^ [10] and the kernel [5], one could define a 

discrete procedure which, starting with any payoff, converges to a stable 

point.  In this paper, we extend the notion of transfer sequence and, 

relying heavily on Steams' methods, prove the necessary convergence results. 

We then consider the subclass of Steams' class of bargaining sets 

which can be described by continuous demand functions. With each of these 

bargaining sets we associate a system of differential equations, the criti- 

cal points of which are precisely the points in the bargaining sets. We 

prove that for any initial point, there is a solution to this system which 

approaches a stable point as t -» •. In the case of the bargaining set 

M| '    and the kernel, these differential equations have unique solutions 

for any initial point. 

Intuitively, these results have the following interpretation. At 

each payoff x, there is a number d..(x) which measures the demand of 

player i against player j. A point is stable if, for all pairs of players, 

the demands are zero. The differential equations express the behavior that 

at any payoff x, all the players are acting to pay off all that they owe, 

and collect all they are owed. That is. 



*l    '    I*1  tx) - I  d  (X) . 

It is this behavior that we prove leads to stability. 

It is felt that these results are the first steps toward meeting the 

criticism that n-person game theory ignores the dynamic aspects of the 

situations it purports to model. It is hoped more results of this type will 

be forthcoming, in particular in such areas as the core, games without side 

payments, Nash equilibrium points and games with infinitely many players. 

2. GENERAL TRANSFER SEQUENCES 

Let n be a positive integer, and let N • {i,...,n). Let Y be 

a compact, convex polyhedron in Rn, real Euclidean n-space. We will denote 

by R   the Euclidean space of points p having n  coordinates, denoted 

•lj 
for all i,j t  N. We will also use the notation [x] ■ max (x,0). 

We define the function a: Y * R 
n*n by the coordinate functions 

»ijOO   - 

sup{c|x(c;  i,j) c Y)     if     I M 

if    i 

where   x e Y,    x(c;  i,j) ■ (x.,...,x.*c,., .,X.-E,...,x ).    We note here 

that   a(x)    is defined and nonnegative (where this means each coordinate is 

nonnegative) for each   x e Y.    Since   Y    is convex, it follows that    a    is 

a concave function on   Y.    It follows from linear programming theory that 

a    is continuous and piecewise linear on    Y. 



N 
Let   v   be an n-person game, that is,  let    v:    2   -* R   be such that 

2n 

v(0) > 0.    Thinking of points in   R       as being indexed by subsets of   N, 

n       2n 

we define   e:    R   -♦ R       by the coordinate functions 

es(x)    -   v{S) - x(S), 

where x(S) is used to denote  [ x., x(0) > 0. Now we define 

s: R^R™ by 

Sij(x) "< 

•max{eT(x)|i c T. j / T)  if it) 

0   if i - j. 

Finally, we define k: Rn - R*1"" and k*: Y - Rnxn by 

kij(x) B I^ij^ ' $ji(x)J*   •nd' 

k'^x) - «inCkj-fx), a^ix)) 

Note that   k(x) ^ 0   and    k#(y) >, 0   for   x c Rn   and    y c Y, 

It is easy to see that 

*(y)    -    (x t Y|k*(x) • 0) 

where K(Y) is the kernel of Y (see [13] for the definitions). In 

particular, let 6 be a partition of N and define 



Yg - {xeR"|xi ^viii)),    ieN; x(S) « v(r,), S c 8} . 

Then K(X>) is the kernel for the coalition structure 8 studied in [5], 

[6] and [7]. Ke remark here that Yg is a coapact, convex polyhedron 

(which, however, may be empty since we ire assuming nothing about the game 

v). 
2n  2n 

Let n: R  -» K   be the ordering function, that is, the coordinates 

of n(z) are just the coordinates of z arranged in decreasing order: 

12 2n n   2n 
n (r) ^ n (z) 1 • • • i n (*)• We let e: R -► R   be the composition 

n*e, and finally, for each 1 « 1,2,...,2 , we let 

♦ : R > R 

be such that   ♦ (x) ■   [    e,(x),    for   x e Rn.    For convenience, we define 
1 i-1    1 

Lwa 2.1:      Let   x t Rn   and let    y ■ x(c;  i,j)    where   0 <_ t <^ k^Cx), 

Then for each   l ■ l,...,2n,    there exists an integer   T < £    such that 

^(y) - ^(x) i H*ji*) - ♦jCy)) 

Proof:  If t » 0, we may take t ■ 0, so we assume that e > 0. Let 

A - (S cN|es(x) > SjjCy)) . 

and  let    l* ■  |A| .    Suppose    sij^x^  " cjW    and    sji(x)  " ^RM'    fTm tht 



definition of k... it follows that 

sij(x) ' e ' sij(y) - sji(y) m sjifx) * c 

and therefore that T t A, R / A. Thus for £ < t*. 

while 

^(y) - i^*)  10. 

If   1 1 i*,    the leana follows by choosing   I ■ 0.    Since no coordinate of 

e   changes by sore than    c,    we may choose   I ■ l*    if   £ > t*. 

2.2:      Let    x,y ,...,y   c R ,    and suppose that for each    i ■ 1,...,B 

and each   £ ■ 1,....2 ,    there exists an integer   F < £    such that 

i     B     i 
Then if   y ■ -     1   Y ,    we have for each    £ ■ 1,.. .,2 

i-1 

♦ .(y) - ♦.(x) i (m£)£     I      (Mx) - ^(y)]* 
0<i<£ 



Proof:    We first note that for each    i. 

Vy)ii J/£(yi) 

Me may assume without loss of generality that we have equality for each i 

Suppose 41 (y) - *. (x) « u)0 > 0. Then there is an index i- and 

an i < e such that 

^ l0 
u)0 < ♦^(y ) - ^(x) <. i(*i (x) - ♦^ (y )) 

Thus 

♦ - (x) - ♦ (y ) >. r-  • 
ll     *l      *■ 

Let u). be such that 

w0  "l 
i^w -♦li(y)i   ■ sr-iS" 

If u. > 0, then there is an i. such that 

i «j 

ll      ll 

Proceeding inductively,  suppose     £<.1»    ii.i    8n<*   w4.i   have *)een defined 

so that 

>.       (y J    )  - ♦,      (x) iu..   ./(mi) 
S-i £j-i       J 



Then there is an l. < I. .    such that 
3   J-l 

i. , . . . , . 
^ (x) - 0£ (x J"1) >. v.^iml^'h,^   ^ u^/mJ'V, 

Let ui. be such that 

ÜJ. , - U) . 

[♦£ (x) - ^ (y)]+ = i'1   . * 
j     j (m£JJ 

If u. > 0,    there is an i. such that 

i. 

♦ o (X J) - ♦. (x) > (D./(m£)J . 

j        J       3 

Since £ > Ä. > • • • > i. ^ 0, we must eventually reach an integer 

p < £ such that u < 0. Then we have p - 

(.ml)1     I      UAx) - ♦4(y)l*    >    (m£)£   f    C^"1      **) 
0<i<£     ' 1 i«l       (ml)1 

-    .L.   K i-l        iy        0        p 
i»l r 

i   ü)0 » ♦)l(y)  - t£(x)     . 

Lenuna 2.3:      There exists a real number   c    such that for    x e R ,    if for 

each   i,j e N,    y1J ■ xCe..; i,j)    where   0 ^ c.. <. ^.(x),    then if we 

set   y ■ -y        I     Y   $   we have 
n       i.jeN 



2n 

|y-x||    5    I    ly.   - x | ^c   I     [* (x)  - o.(y)]* 
ieN      1 1 4»0        ^ * 

Proof:       Since for    ieN, 

'i ' «i-7 jL^-^'- 

we have 

n      ieN'jeN     1J        J1 

2 V 
n      i.jcN       J 

<     2    max     c.. 
i.jeN     1J 

Suppose    e .   >   max    e. .  > 0.    As in the proof of Lemna 2.1,    there is an 
ab     i.jcN    1J 

l    such that 

^(yab) - ♦jW   <   - eab 

Let    w      be such that 

r    , . r M* £ab ' "l 

n 



If   ü),  > 0,    then continue as in the proof of Leirana 2.2, to obtain 

. n 7n   2n 

^ab   L   (" 2,V     I      [♦  (x)  - ♦(/)]*    . 
psQ r r 

2 n z 
Setting c = 2(n 2 )  , we have the desired result. 

Lenma 2.4:  Suppose for each i,j e N, we are given e.. where 0 < e.. < k. . (y] 

for a fixed x e Rn. Then  J (c. - e.) » 0 for each i e N if and only 
           jcN  ^   ^          L 

if e.. ■ 0 for each i,j e N. 

Proof:      Sufficiency is obvious.    To prove necessity, notice first that if 

i,j,t e N    then    k  . (x) > 0    implies    k..(x)  ■ 0,    and    k..(x)  > 0   and 

k.^Cx) > 0    imply    k.   (x) > 0.    The proof of this follows almost exactly 

as in [S; Lemma 5.1]. 

Suppose for each   i e N,     J    ict-  ' tiO ' 0'    but   ei  i    * 0'    Thus 

jcN      1J        J 12 

kx i  (x) > 0. By checking the above sum for i » i-, we find an    i.    so 
V2 £ * 

that    t.   •    > 0;    hence   k.   .   (x) > 0    which implies k.   .   (x)  > 0.    We 
V3 12ll 13 

may continue this process and obtain    i^,. •••#!_   *o that    c.   ,        > 0    and 

k.   ,      (x) > 0,    I ■  l,...,p-l.    Since the number of indices is finite,  we 
ll 1*1 

must eventually have some index appear twice.    Assume without loss of 

generality that    i.  ■ i  .    Then   k.   .   (x) > 0,    which is impossible.    There- 

fore   e.. - 0    for all    i,j t N. 
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Definition 2.S:      Let    x e R  .    The x-core,    C(x),    is given by 

C(x)    »    {yeRn|y(N) » x(N);    ei(y)1ei(x)} 

Note that for any x, C(x) is a compact, convex polyhedron and 

x e C(x). We remark that if x is a payoff vector, then C(x) coincides 

with the strong e1(x)-core for e.(x) ^0, and C(x) is the core when x 

belongs to the core (i.e., when e.(x) ■ 0).  (See (8 ].) It is easy to see 

that if y c C(x) then C(y) c C(x). 

Definition 2.6:  Suppose x e R , and for each i,j E N, 0 1 eii i "T ^n^) 
n "  J  n   J 

Let y c R  be ^Ufined by 

'. ■ x.* y (c.-c. )  for  i e N 

Then wc say y rorults froa   x by a k-bounded transfer. 

We observe here :hat if y results from x by a k-bounded transfer, 

7 1 r 
then if we set    *<4 ■ n:, .,    we have   y ■ -y     )      xt'ii'* i>i^'    Thus' 

1J 1J n    l.j.N        1J 

y    satisfies the hypotheses of Leamas 2.2 and 2.3. 

Learta 2.7:      If   y    res'Us from   x   b^ a k-boum'cd trn'ifer, then   y e C(x). 

Proof:      It follows from the definition that    y(N) ■ x(N).    Since   ♦j • e^ 

the result follows from Lemma 2.2. 

Defining k#-bounded transfers in the obvious way, we can observe that 

if    x c Y   and   y   results from   x   by a k*-bounded transfer, then   y t C(x)  H Y. 
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We say a sequence {x }. _ of points in R  is a transfer sequence 

if for each i,  x   results from x  by a k-bounded transfer. By 

applying Lenma 2.7,  we can obtain the following result. 

Lenma 2.8:      If    {x }. 0   is a transfer sequence, then for each    i,    x    e C(x ) 

Thus every transfer sequence is bounded.    Further,  if   x    e Y   and all the 

transfers are   k*-bounded, then   x    E C(x ) n Y   for each    i. 

We are able to say more.    As we will next prove, every transfer sequence 

is convergent. 

Theorgg 2.9:      Given   x0 e Rn,    there exists a real number    ß(x0),    such 

that for all transfer sequences    ^h,/)    starting at   x , 

I    ||xi41 - x1!!    <    ß(x0)  . (2.9.1) 
i-0 

Further, given a coroact. convex set    Y,    there exists a real number    ß(Y), 

independent of the game   v,    such that for any   x   c Y   and any sequence 

(x ).  .    consisting only of   k*-bounded transfers,  (2.9.1)  is true with 

e(Y)    in place of   6(x0). 

Proof:    For each    i   and integer    t,    0 < l < 2 ,    set 

«I(i)    •    (^(x1*1)  - ^(x1)]*.       and 

«[(i)   -    (^(x1) - ^(x1*1)]* 
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r r 
In addition let L * I «„(i) and D, ■ ^ Oi). Then by Lemma 2.3, 

^  i«0 ' i»0 l 

2n 

Mx1*1 -x1!! <_   c    I    6-(i) . 
l«0 

and thus 

r 2n 

I llx^-x1!! <. c Z DJ . 
i«0 t»0 

We will show the existence of a ß(x ) (or 0(Y), in the second case) such 

that for all r > 0 

2n 

c I  D' <. BCx0)  (or B(Y)) . 
1-0 

By Lemma 2.2, we have for each £, 

2.1 
4*(i) <. (n O   I    6'Ai)    . 
* 0<3<a J 

Therefore, for all   r > 0,    by suaming from    0    to   r,   we get 

i 

1 0<;<i    * 

Now    yi)   - 6*(i) - ^(xl)  - ♦Jx1*1),    so 

D* - ij    •    ^(x0)   - ^(x'*1)    . (2.9.3) 
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By Leuna 2.8, both   x0,    xr*    e C(x0)    (or   C(x0) n Y,    for the second case) 

By the compactness of   C(x0)    (or   Y),    there exists a   p(x0)    (p{Y))    such 

that 

max  |x(S)   - y(S)|    4   p(x0)      (p(Y)) 

for all x.y e C(x0) (x.y e Y). Thus for S c N, e (y) - e (x) <. p (x0), 

and thus ^(y) - ^^x) <.*P(X0) for x.y e C(x0) (or ^(y) - ^(x) < £p(Y) 

for x,y e Y). Applying this to (2.9.3), we get for each I 

Dj 1 l[ ♦ Mx0)  (2P(Y)) . (2.9.4) 

Note here that   p(x )    depends on   C(x ),    therefore on   x     and   v. 

On the other hand,    p(Y)    depends only on   Y. 

To derive the bounds    ß(x0)    and   e(Y),    notice first that for all  r >. 0, 

r r r        .     r I0    ■    D.    ■   0.   Now suppose that    I.    and    D.    have been given bounds 

independent of   r   for   j ■ 0,...,i-l.    First (2.9.2) provides a bound for 

r r I  ,    and then (2.9.4) provides a bound for   D .    Both these bounds are 

independent of   r.    The theorem follows. 

DEMAND FUNCTIONS AND BARGAINING SETS 

n       n*n 
By a demand function, we will mean a continuous function   d:    R   ■► R 

which satisfies 

0 < d(x) < k(x) 

for all    x E Rn. 
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For a given demand function d, we define a function D: Rn -» Rn 

by D. « I    (d.. - d..). It follows from Leuna 2.4 that D(x) « 0 if 
1      jeN  1J   J1 

and only if d. .(x) » 0 for all i.j e N. We now can define the bargaining 

set associated with the demand function d as 

M(d) « {x£Rn|D(x) » 0} 

This agrees with the definition given by Steams in [14]. 

Suppose, in addition, that d(y) ^ k*(y) for y e Y. Then we say 

d is k* bounded and we define 

The 

MyCd) • M(d) 0 Y 

Brouwer fixed point theorem shows that MyCd) t $   since the map 

f: Y * Y given by f(x) ■ x ♦ -y D(x) must have a fixed point. The non- 
n 

emptiness of   M(d)    for general    d   will follow from the next result. 

Theorem 3.1:      Let    x0 c Rn   and suppose a sequence   (x ).-    is defined by 

x       ■ x   ♦ hDCx1)    where   0 < h <^ -y.    Then   (x )   converges to a point ~ n        .      , 

x c M(d). 

Further,  if    x0 c Y   and   d    is    k*   bounded, then    (x1)    converges 

to   x t MY(d). 

Proof:      In either case, the sequence is a transfer sequence, and therefore 

Theorem 2.9 applies to give 

I   l|xi41 -x1!!   <  -  . 
i-0 



15 

This implies the sequence is Cauchy, si ice for    m > k, 

|xB-xk||   <  ai   Mx^-x1!!   !   I   Mx1*1 -x1!!. 
i»k i»k 

which can be Bade small for large k. Thus there exists x e R  s.t 

x -»x. Since 0 is continuous, and 

MDtx1)!! - illx1*1 - x1!! *  o. 

it follows that D(x) > 0 and x c M(d) in the first case. 

In the second case, Letnma 2.8 implies that x c Y and by the above 

argument, D(x) » 0. 

Corollary 3.2: M(d) t $, in fact, for any x0 c Rn, there exists an 

x c M(d) nc(x0). If d Jis k* bounded, then for any x0 c Y, there 

exists an x c MY(d) nc(x
0). 

No remark here that In either of the cases treated in 3.1 we have 

I  Mx1*1 -x1!! < 6, 
i-0 

where    6   will depend either on    x     or on   Y,    but    ß    is independent of 

h. 
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4.    GLOBAL STABILITY 

Let    d   be a demand function, and consider the system of differential 

equations 

x"    »    D(x)    . (4.1) 

Since   D    is continuous, there exist solutions to 4.1 through any initial 

point    x0 e  Rn.   Fro« (9, Theorem 1.31, p. 9), it follows that the solutions 

of 4.1 are defined for all    t c R,    since each   D.    is nonnegative and 

bounded above by the piecewise linear function     £    (k. . ♦ k..)- 
jtN     13        31 

We will be concerned here only with solutions defined on   R+ « [0,») 

and starting at some fixed initial point,    x   e R .    That is, we will con- 

sider functions   $:    R^ -» R      such that   ^(0) > x     and 

1 tr~ ■ M*(t)) • 

for all t c R^. 

Theorem 4.1: For any x0 c R , there exists a solution ♦ to x* ■ D(x) 

such that ♦(O) ■ x0 and ♦(t) converges to a point x c M(d) as t -► •. 

If. in addition, x0 c Y and d is k* bounded, then ♦(t) c Y for all 

t c R^ and x c ^(d), 

Proof: Let x0 t Rn, and choose a real number M so that ||D(x)|| <. M 

for x c C(x0). 

Let 0 < h i h0 ■ -«• ,  and define the sequence {x } by 
n 

x1*1 ■ xx ♦ W{xl).    Notice that {x1} cC(x0), and if x0 c Y and d is 
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k*    bounded, then    {x1} cC(x0) fl Y,    by Lemna 2.8.    Now define 

♦h:    R^C(x0) 

by   ^(0) - x0.    and 

*h(t)    «   x1 ♦ D^Ht - ih) 

where i is chosen so that ih < t ^ (i*l)h. That i     maps into C(x0) 

follows from the above comments and the convexity of C(x ). Again, if 

x e Y and d is k* bounded, then $  maps into C(x ) D Y. 

Let <h> ■ {ih|i ■ 0,1,2,...}. On R^ - <h> we have that 

f hV 
exists.* In fact, for ih < t < (i*l)n. 

'hV 

(t) • DCx*). 

Let r > 0, and choose 0 < h ^ h0 so that for x,y e C(x ), 

||y-x|| < Mhc  implies ||D(y) - D(x)|| < c. Let 0 < h < h , t c R^ - <h>. 

and suppose ih < t < (i-»l)h. Then since 

|Uh(t) - x1!! - ||D(xl)|| |t.ih| < Mhe , 

we have 

||[*hJ (t) -DUh(t))|| • \\ü[xX)  -  DUh(t))|| < e 

Clearly I|*h(t) - ♦h(t,)|| < M|t-t'| for all 0 < h <. hp. Thus 

the family of functions {♦ |0 < h ^ h.} is uniformly bounded and equi- 

continuous. Let (h .)"  be such that h. <, hn for each j and h. -► 0 

♦ ' " dT 
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as j * ». Denote * J by <> . By the Ascoli theorem, there is a sub- 

sequence of the ^    (we may assume now without loss of generality that it 

is the entire sequence o ) and a continuous function 

♦: R+ ^ CCx") 

such that <iJ -► ♦ pointwise on R  as j ■* » and the convergence is uniform 

on compact subsets of R . We show lirst that $ is a solution to 

x' » D(x). Clearly *(0) - x0. Nate that ||^(t) - ♦(t,)|| ^Mlt-t'l. 

Let    bhr.) = (t) - D«(>J(t)    for   t c R+    such that    U\ (t) 

exists.    Ciherwise let    &J(t)  » 0.    Thus,    Dc^J(t) ♦ AJ(t) »  U 

whenever 

(t) 

(t) exists, that is, except for a countable subset of R+. 

Since $J is absolutely continuous, it follows that 

♦j(t) - x0 ♦ / [DO^
J
(T) ♦ Aj(T)ldT . 

0 

Since ^ -► $ uniformly on [0,t] and D is uniformly continuous on 

C(x0), we have that D»^ -► D*^  uniformly on [0,t]. From the discussion 

above, it follows that t* (t) ■*■ 0 uniformly on R^. Thus 

♦(t)  -  X0 ♦ / Do*(T)dT , 
0 

and finally 

♦ '(t) DU(t)) . 
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We show now that $(t) converges to a point x e M(d) as t -► «. 

It follows from the remark following Corollary 3.2 that there is a number 

ß (independent of h) such that the total variation of the function 41 , 

0 < h 1 h0' on the interval [0«T1 is less than ß for a11 T e R+- 

Since $* + $    it follows that the total variation of <> on [0,T] is also 

less than 6 for all T. Therefore <J>(t) converges to a unique limit 

point xeC(x) as t-*». 

To see that x e M(d), note that Do^t) -* D(x) as t -► ». For each 

I 
integer i > 0, and for each i ■ l,...,n, there is a T. e R+, such 

l 
that * <. T. <, H+l and 

^(Ul) - ♦.(!) . <J.'(T*) 

Since for each i, T. -»• • as I •*■ <*t    we have 

Da • ♦(Ti) -* D.(x) as i -- •* . 

But ♦.(i*l) - «MM ■♦ 0 as t -► «  for each  i,  thus D(x) « 0 and 

x c M(d). 

If x^ c Y and d is k* bounded, we have i>(RJ c C(x0) nv since 

this holds for each $ . It is clear that x must be in MY(d) in this 

case. This completes the proof. 

We remark that in the case where x0 e Y and the demand functions 

are k* bounded, it is enough to consider them as if they were defined 

only on Y. This causes no loss of generality since any function 
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J*:    Y ^ R satisfying    d* < k*    can be extended to a    k*    bounded demand 

function    d:    Rn - P**n    such that    d|Y = d*. 

5.     SOME  SPECIAL CASES 

If the demand function   d    has the property that the system    x* * D(x) 

has a unique solution through each initial point    x0,    then Theorem 4.1 

becomes particularly useful.    A simple condition which guarantees uniqueness 

is that each of the functions d..     is piecewise linear with a finite number 

of t'rfercn: 11"    v "pieces' .    Indeed, this condition implies that    D(x)    ?s 

uniformly Lipsculuz and hence that solutions of   x' * D(x)    are unique 

(see [4]). 

It is clear that the function    k    is piecewise linear on   R ,    and 

since    Y    is a polyhedron,    k*    is piecewise linear on   Y.    Letting    Y « Yg 

for some partition   C   of   N    (and assuming   Y j* 0),    we have   K(Y) » MY(k*) 

wnich is the kernel for the coalition structure   B. 

Following Stearns [14], we can define a   V*    bounded demand function 

m   on    Y_    so that   fi (m)    is the bargaining set   Mj '    for the coalition 

structure   B   (see [10]).    It can be shown that   m   is also piecewise linear. 

The continuity of   m   follows from [1; Lemma 2.11].    Taking these facts 

together with Theorem 4.1, we can state the following. 

Theorem 5.1:      The differential equations which describe (in the sense of 

Section 4) the kernel   K   and the bargaining set   M^       for any partition 

B   have unique solutions through any point    x    e Yp.    Further, these 

solutions approach   K   and   il:        as   t -» ». 
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In the case where v is monotonic in the zero normalization (see [8]) 

we can simplify the differential equations which describe the kernel K for 

the grand coalition (i.e. B = {N}). 

Proposition 5.2:  Let Y = Y/Ni« Then if v is monotonic in the zero norma- 

lization, we have 

K    '    M^k*) - M(k) 0 {xeRn|x(N) «v(N)} . 

Proof:      That    K    » MY(k*)    is clear.    We prove the second equalxty.    The 

inclusion 

MY(k*) CK(k) n{XeRn|x(N)  » v(N)) 

is Lemma 3.4 of [8], To show the opposite inclusion,* suppose x(N) ■ v(N) 

and  s..(x) ■ s..(x) for all i,j € N, but x. < v({k}) for some k. 

Let P be the set of coalitions S for which e<.(x) is maximum. Since 

e,. x(x) > 0, N ^ P. Further, S c P implies k t S since T t P, k ^ T 

implies «R(x) > eT(x), where R « T U {k}, by monotonicity in the zero 

normalization and the assumption that x. < v({k}). Therefore, there exists 

an Ä e N s.t. sk«(x) > s.i-t35)! which is impossible. Thus, x. >.v({k)). 

Theorem 5.3:  Let v be monotonic in the zero normalization and let K 

be the kernel of v for the grand coalition structure. Suppose x c R 

and x0(N) ■ v(N). Then the unique solution ♦ to x* ■ K(x) such that 

♦(0) • x  has the property that 

*The author is indebted to Elon Kohlberg for this proof. 
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lim ♦(!)  t K  . 
t-H» 

Proof:      This is immediate from Thcjrem 4.1 and Proposition 5. 

6.    CCTIMENTS 

One problem left by this study is to obtain a direct proof of Theorem 

4.1, that is, one which does not require going through discrete transfer 

methods (at i-ast in the case where the differential equations have unique 

solutions.) It would seem from the methods of this study that one should 

be abie to obtain stability theorems for systems of differential equations 

by use of lexicographically decreasing vector "Lyapunov functions." The 

function 6 seems to serve this purpose here. However, the fact that the 

lexicographic ordering is not continuous keeps the standard proofs from 

working in this case. 

It would be of great interest in Mathematical Economics if global 

stability results could be obtained for the core. Such results would say 

something about the tendency of an economy to reach equilibrium. A global 

stability result for the nucleolus (see [13]) would essentially be a result 

for the core since the nucleolus is in the core whenever the core is non- 

empty. We feel it is likely that the results here can be extended in some 

way to obtain convergence to the nucleolus. 

It would also be interesting to extend the notion of a "behavioral 

vector field" to games without side payments and games with infinitely many 

players. In the case of infinitely many players, it has so far been diffi- 

cult even to extend the notion of bargaining set, much less to worry about 

existence. Perhaps the differential equations approach will prove more 
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fruitful. Results on glmes without side payments ([11], [2] and [1]) 

seem to indicate that static stability may not always be possible, and that 

we may have to settle for some sort of cyclic behavior. Perhaps this can 

be fomalized in terms of periodic solutions to related differential 

equations. 

Finally, one can describe the Nash equilibrium point solutions to a 

multiperson cooperative game by demand functions, and, therefore, by a system 

of differential equations. These equations resemble (but are essentially 

different than) the differential equations studied by Brown and von Neumann 

[3] for solving zero-sum two-person games. The notion of demand functions 

for equilibrium points is motivated by Peleg's treatment of equilibrium 

points as solutions to open acyclic relations in [12]. 

Roughly, let S. be the (finite) set of pure strategies for player 
k    m 

k, k ■ l,...,m. Let n ■ ^ |S. |, and let 
k-1 K 

Y - {xeRn|x. > 0;  [  x. » 1,   k - l,...,n} 
icS, X 

be the set of vectors of nixed strategies for the m players. For each 

k > 1,...,m, let 

V Y - R 

be the payoff function for player k and let H.(x|i) denote the payoff 

to player k when every other player plays his mixed strategy as given in 
m 

A, but player k uses his pure strategy i. Let i,j € N ■ U S^. We 
k-l 
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define the demand function 

d:    Y-RnXn 

by d^Cx) = x^Kfxji) - H-Cxlj)]* when i,j e S^ for some k. Otherwise 

d..(x) = 0. It is clear that x is an equilibrium point if and only if 

dii(x) « 0 for all i,j e N. It is not known whether Theorem 4.1 is true 

for the system x' » D(x) defined by the function d. 

The author is grateful to M. Balch, M. Brown, C. Dafernos and M. Maschler 

for many helpful conversations on this work. 
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